

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/22

Paper 2 Theory

May/June 2013

1 hour 30 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Write your answers in the spaces provided in the Question Paper.

Section B

Answer any three questions.

Write your answers in the spaces provided in the Question Paper.

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

This document consists of 19 printed pages and 1 blank page.

Section A

For Examiner's Use

Answer **all** the questions in this section in the spaces provided.

The total mark for this section is 45.

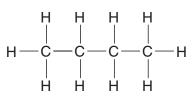
A 1	Cho	ose from the following elements to answer the questions below.
		barium
		calcium
		carbon
		copper
		helium
		hydrogen
		iron
		lead
		lithium
		sulfur
		zinc
	Eac	h element can be used once, more than once or not at all.
	Nan	ne an element which
	(a)	forms two acidic oxides,
		[1]
	(b)	has an ion which, in aqueous solution, reacts with aqueous sodium hydroxide to give a green precipitate,
		[1]
	(c)	has an atom with an electronic configuration with only four occupied shells,
		[1]
	(d)	has two giant molecular structures,
		[1]
	(e)	has an ion which, in aqueous solution, is used to test for sulfate ions,
		[1]
	(f)	reacts with water to form an alkaline solution.
		[41]

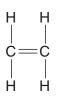
[Total: 6]

A2	Bot	h res	spiration and comb	oustion add carbon dioxide to the atmosphere.
	(a)	Giv		scientists are concerned about the increasing use of fossil fuels.
	(b)	 Res		ess that occurs in living organisms where glucose, C ₆ H ₁₂ O ₆ , reacts
	(5)		n oxygen.	100 that 600ard in inving organisms whore glacese, 611 ₁₂ 06, reads
		Wri		ation that represents respiration.
	(c)	Res	spiration is an exo	thermic reaction.
		(i)	•	of the energy changes that occur during bond breaking and bond piration is an exothermic reaction.
				TO!
		/ii\		ergy profile diagram for respiration
		(ii)	On your diagram	ergy profile diagram for respiration.
			producenthalp	
			4	
			energy	reactants
			55193	
				progress of reaction

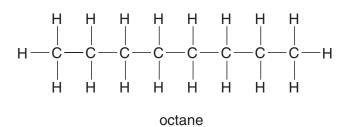
[Total: 7]

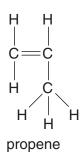
[3]


For Examiner's Use


Alu	minium is a metal and both iodine and bromine are non-metals.	
(a)	How does the number of valency electrons help to explain why aluminium is a metal and iodine and bromine are non-metals?	Exa
	[2]	
(b)	At room temperature iodine is a solid and bromine is a liquid.	
	Describe the difference between both the arrangement and the motion of particles in a solid and a liquid.	
	[2]	
(c)	lodine and bromine form the compound iodine bromide, IBr.	
	Draw the 'dot-and-cross' diagram for IBr.	
	Only draw the outer shell electrons.	
	[1]	
(d)	Describe how bromine is used to test for unsaturation in organic compounds.	
()		
	[1]	
	[1]	

(e)	Aluminium is used to make alloys for the aircraft industry. One reason for this is that aluminium does not corrode very easily.				
	(i)	State one other reason why aluminium is used in the manufacture of aircraft.			
		[1]			
	(ii)	Explain why aluminium does not corrode very easily.			
		[2]			
		[Total: 9]			


A4 The structures of some of the compounds that can be manufactured from crude oil are shown.


For Examiner's Use

ethene

(a) Octane is found in the petrol fraction separated from crude oil.

property which allows this process to be carried out.	ie ine priysicar

(b) Hexadecane, C₁₆H₃₄, can be cracked to produce a mixture of alkanes and alkenes.Construct an equation to show the cracking of hexadecane to produce octane.

[2]

(c) Propene can be polymerised to make poly(propene).

Draw a section of the structure of poly(propene).

-	-
	וכיו
	_

(d) Ethanol is manufactured by a hydration reaction.

State both the reagents and conditions for this reaction.

ici

[Total: 8]

A5 Analysis of compound **X** shows it has the following composition.

For
Examiner's
Use

[2]

[Total: 8]

element	percentage by mass
hydrogen	3.40
nitrogen	12.0
oxygen	41.0
vanadium	43.6

(a) Show that ${\bf X}$ has the formula ${\bf H_4NO_3V}$.

(b)	Suggest one property of aqueous X caused by the presence of vanadium.
	[1]
(c)	Aqueous sodium hydroxide is added to solid X and the mixture is warmed.
	A colourless gas that turns moist red litmus blue is evolved.
	Deduce the formula of each of the two ions present in ${\bf X}$.
	[2]
(d)	An acidified aqueous solution of X reacts with aqueous potassium iodide to form iodine.
	State and explain what you can deduce about the chemical nature of X .
	[2]
(e)	When solid ${\bf X}$ is heated only ${\bf V_2O_5}$, water and gas ${\bf Z}$ are formed.
	Name gas Z .
	[1]

BLANK PAGE

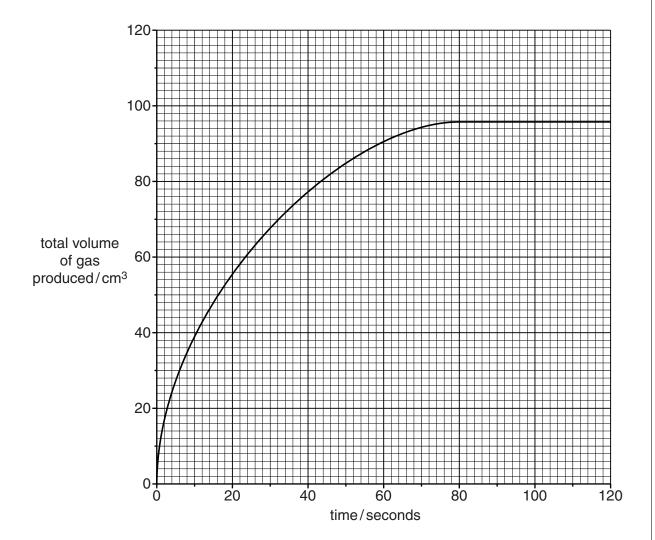
For Examiner's Use

A6	A6 A 0.250 g sample of iron filings is added to 25.0 cm ³ of 0.100 mol/dm ³ aqueous coppe sulfate.				
		$Cu^{2+}(aq) + Fe(s) \rightarrow Fe^{2+}(aq) + Cu(s)$			
	(a)	Explain, using electron transfer, why iron is oxidised in this reaction.			
		[1]			
	(b)	Show, by calculation, which reactant is in excess.			
		[3]			
	(c)	What would you observe in this reaction?			
		[2]			
	(d)	Copper powder is added to aqueous silver nitrate.			
		Predict whether or not a reaction will take place. Explain your answer.			
		[1]			
		[Total: 7]			

Section B

For Examiner's Use

Answer three questions from this section in the spaces provided.


The total mark for this section is 30.

B7 An antacid tablet contains a mixture of magnesium hydroxide, ${\rm Mg(OH)_2}$, and calcium carbonate, ${\rm CaCO_3}$.

Stomach acid contains dilute hydrochloric acid.

A student adds a 0.500 g antacid tablet to $50.0\,\mathrm{cm^3}$ of $1.00\,\mathrm{mol/dm^3}$ hydrochloric acid, HCl. The acid is in excess.

The graph shows how the total volume of gas produced at r.t.p. changes with time.

(a)	Des	scribe, with the aid of a labelled diagram, the apparatus needed to collect this data.	For
			Examiner's
			Use
		[2]	
(b)	(i)	Write equations for the reactions of HCl with $Mg(OH)_2$ and also with $CaCO_3$.	
		$Mg(OH)_2$	
		CaCO ₃	
		$0a00_3$	
		[2]	
		[-]	
	(ii)	Calculate the amount, in moles, of carbon dioxide formed at r.t.p. once the reaction	
		had stopped.	
		amount in moles =[2]	
		[-]	
	(iii)	Calculate the mass of CaCO ₃ in the tablet.	
		mass of $CaCO_3 = \dots g$ [2]	
		Question B7 continues on page 12.	

(c)	The student repeats the experiment. This time she uses a $0.500\mathrm{g}$ antacid tablet and $50.0\mathrm{cm^3}$ of $2.00\mathrm{mol/dm^3}$ HC l instead of $50.0\mathrm{cm^3}$ of $1.00\mathrm{mol/dm^3}$ HC l . Describe and explain what will happen to the rate of reaction.	For Examine Use
	[2]	

Question B8 starts on page 14.

B8 Alcohols are a homologous series of organic compounds.

The table shows information about some alcohols.

For Examiner's Use

alcohol	molecular formula	melting point /°C	density /g/cm ³
methanol	CH ₄ O	-98	0.79
ethanol	C ₂ H ₆ O	-114	0.79
	C ₃ H ₈ O	-126	0.80
butanol	C ₄ H ₁₀ O		
decanol		7	0.83

(a)		ich group of atoms (functional group) must be present in the homologous series of the homologous	Σţ
		[-	1]
(b)	Nan	ne the alcohol with the molecular formula C ₃ H ₈ O.	
		[1]
(c)	(i)	Deduce the general formula for an alcohol.	
		[1]
	(ii)	A molecule of decanol has ten carbon atoms.	
		What is the molecular formula for decanol?	
		[1]
(d)		more difficult to estimate the melting point of butanol than to estimate its density. the data in the table to explain why.	
		r	4 1

(e)	When warmed in the presence of concentrated sulfuric acid, butanol reacts with ethanoic acid to form an ester.	For Examiner's Use
	Name and draw the structure, showing all the atoms and all the bonds, of this ester.	
	name	
	structure	
	[2]	
(f)	Ethanol reacts with oxygen in the air to form ethanoic acid.	
	Describe another method by which ethanol can be converted into ethanoic acid.	
	[2]	
(g)	Butanol can burn in a limited supply of air.	
	Name two products of this reaction.	
	[1]	
	[Total: 10]	

R۵	Mothana	reacte wit	h water to	nroduce h	vdrogen	and carbon	monovida
DЭ	welliane	reacts wit	ii watei to	producer	iyurogen	and Carbon	i illolloxide.

For
Examiner's
Hea

$$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$$
 $\Delta H = +210 \text{ kJ/mol}$

This reaction is endothermic.

The reaction is normally carried out at a pressure of 30 atmospheres and a temperature of $850\,^{\circ}\text{C}$.

500	О.	
(a)	The	reaction is carried out at 30 atmospheres pressure and at 600 °C rather than 850 °C.
	Pred	dict and explain the effect of lowering the temperature on
	(i)	the rate of reaction,
		[2]
	(ii)	the position of equilibrium.
		[2]
(b)	The 850	reaction is carried out at ${\bf 50}$ atmospheres rather than 30 atmospheres, and at $^{\circ}{\bf C}$.
	Pred	dict and explain the effect of raising the pressure on the position of equilibrium.
		[2]
(c)	The	reaction uses a catalyst.
	(i)	What effect does a catalyst have on the position of equilibrium?
		[1]
	(ii)	Explain how a catalyst causes the rate of reaction to increase.
		[1]

(d)	Calculate the energy absorbed by the reaction when 560 g of CO is formed.

For Examiner's Use

energy absorbed =kJ [2]

[Total: 10]

B10 Solid sodium chloride and magnesium oxide have the same structure and bonding.

For
Examiner's
Use

This is the structure of sodium chloride.

The table shows the melting point of these two compounds.

compound	melting point/°C
magnesium oxide	2852
sodium chloride	801

(a)	(i)	What are the formulae for a magnesium ion and an oxide ion?
		[1]
	(ii)	Suggest why magnesium oxide has a much higher melting point than sodium chloride.
		[1]
(b)	(i)	Explain why pure sodium chloride can be electrolysed at 1000 °C but not at 600 °C.
		[2]
	(ii)	Construct an equation for the anode reaction in the electrolysis of pure sodium chloride at 1000 °C.

For Examiner's Use

(c)	Sodium chloride is dissolved in distilled water.												
		ess aqueous silver nitrate is added to this solution and 0.232 g of a white precipitate ormed.											
	(i)	Construct an ionic equation, including state symbols, for the formation of the white precipitate.											
		[2]											
	(ii) Calculate the mass of sodium chloride present in the solution.												
		mass of sodium chloride = g [3]											
		[Total: 10]											

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

The Periodic Table of the Elements	0	- 3	Hydrogen 2 Helium	12 14 16 19		Boron Carbon Nitrogen Oxygen Fluorine Neon 5 6 7 8 9 10	28 31 32 35.5	Si	Aluminium Silcon Phosphorus Sulfur Chlorine Argon 13 14 15 15 16 17 18	59 59 64 65 70 73 75 79 80	Zn Ga Ge	Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine 13 26 27 28 30 31 32 33 34 35 36 36	106 108 112 115 119 122 128 127	Rh Pd Ag Cd In Sn	Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine 53 54	195 197 201 204 207 209 209 210	Os Ir Pt Au Hg T1 Pb Bi Po At Rn	Osmium Tricium Patrium Gold Mercury Thallium Lead Bismuth Polonium Asratine Radon 76 77 78 80 81 84 85 86 86				162 165 167 169 173	Dv Ho Er Tm Yb
	≡			Ξ	Δ		27	Αſ	Aluminium 13	20	Сa	Gallium 31	115		49	204	11	Thallium 81				162	۵
nts										65	Zn		112	ၓ	Cadmium 48	201	Нg	Mercury 80				159	Tp
Elemer										64	D C	Copper 29	108	Ag		197	Au					157	g
le of the	dno									59	Z		106	Pd	Palladium 46	195	풉	Platinum 78				152	Ш
odic Tab	5									59	ပိ	Cobalt 27	103	絽	Rhodium 45	192	i	Iridium 77				150	Sm
he Peric		- 1	Hydrogen 1							56	Pe		101	Bu	Ruthenium 44	190	s _O	Osmium 76				147	Pm
-										55	Mn	Manganese 25		ဥ	_	186	Re	Rhenium 75				144	2
										52	ပ်	Chromium 24	96	Mo	Molybdenum 42	184	>	Tungsten 74				141	Ą
										51	>	Vanadium 23	93	Q N	Niobium 41	181	<u>r</u>	Tantalum 73				140	S
										48	F	Titanium 22	91	Ż	Zirconium 40	178	Ξ	Hafnium 72				_	
										45	သင	Scandium 21	89		Yttrium 39	139	Ľa	Lanthanum 57 *	227	Ac	Actinium 89 †	o pripo	0 00000
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Š	Strontium 38	137	Ва	Barium 56	226	Ва	Radium 88	* 58_71 Lanthanoid series	TOO 100 VOTINGED SOILS
	_			7	=	3 Lithium	23	Na	Sodium 11	39	¥	Potassium 19	85	Вb	Rubidium 37	133	Cs	Caesium 55	223	ì.	Francium 87	58-71	

Ytterbium Nobelium **L** 258 **Md** 69 257 **Fm** Fermium 100 Erbium 89 **P** 252 **ES** Californium Dy Dysprosium 247 **BK**Berkelium
1 97 **Tb** 65 **Gad**Olinium 64 **Curium Europium** 243 **Am** Americium Samarium 62 244 **Pu** Promethium 61 Neptunium Pm Neodymium Š 09 Praseodymium 59 Ā 231 **Pa S**erium 232 **Th** Thorium 28 90 b = atomic (proton) number a = relative atomic mass X = atomic symbol

260 **Lr** Lawrendum 103

The volume of one mole of any gas is 24dm3 at room temperature and pressure (r.t.p.).

р

Key